# Elementary Theory of Alternating Currents

Presented by:

Ragav, VU3VWR



## What is AC?

- AC, or Alternating Current, is the form of electric power that is found commonly all around us
- Alternating current is a changing current its direction and size vary constantly, sometimes it flows in one direction in the circuit and a fraction of a second later it is flowing in the other.
- Audio and Radio waves carried via wires are forms of AC







## What is DC?

- Direct Current, or DC, is the form of current found in batteries
- Direct current, or DC, is a steady current it does not change in size or direction with time
- DC powers most of our portable electronics such as phones, watches, laptop computers, etc.

















# Properties of AC

- Frequency: It is the number of occurrences of a repeating event per unit time, Denoted by "f"; measured in Hertz; denoted by Hz (Old: Cycles/Second)
- Period : Amount of time required to complete one cycle; measured in seconds/ cycle
- Wavelength : distance travelled by a wave in one cycle; denoted by Greek alphabet " $\lambda$ " Lambda.
- Amplitude: Maximum extent of oscillation from equilibrium.





# AC Versus DC

| AC                                            | DC                                                            |
|-----------------------------------------------|---------------------------------------------------------------|
| Efficient to send over distances              | Inefficient to send over distances                            |
| Cannot be stored directly in batteries        | Can be stored in batteries easily                             |
| Voltage can be stepped up or down efficiently | Voltage conversion is not as efficient as AC                  |
| Dangerous! Not suitable for portable gadgets  | Not as dangerous as AC, not suitable for power hungry gadgets |



• Peak Value





• Peak to Peak value





• Instantaneous Value





Average Value





• Effective or Root Mean Square Value





## Phase

• Phase is the specific location of a point within a wave, with respect to time. It is measured in degrees or radian.





## Phase Difference

• It is the difference, expressed in degrees or time, between two waves having the same frequency and referenced to the same point in time.





## In Phase

• If the crests of two waves pass the same point or line at the same time, then they are in phase for that position



## Out of Phase

• If the crests of one wave and the trough of another pass through the same point or line at the same time, they are said to be Out of Phase



## Antiphase

• If the phase difference between two waves is 180 degrees, then the two waves are said to be in antiphase; this can lead to destructive interference, a phenomena in which both waves cancel each other





#### Reactance

- Reactance is the measure of opposition in a AC circuit
- Two kinds of reactance: Inductive and Capacitive
- Inductive Reactance,  $X_L$ , is calculated using  $2\pi f L$
- Capacitive Reactance,  $X_C$ , is calculated using  $1/(2\pi fC)$
- with DC: No Reactance; with AC and DC: Reactance; DC, Switched: Reactance but temporary



# Impedance

- Impedance is the term used to describe the combined effect of both resistance and reactance in a circuit; it is given in Ohms.
- Electrical impedance is just a form of resistance that depends on frequency
- Impedance of circuits, and matching them between connecting circuits is very important to prevent any losses



#### Resistance

- Resistance is the opposition to the flow of current in a circuit. It is measured in Ohms (symbol  $\Omega$ )
- They are used to control the flow of current or voltage in a circuit
- Resistors are colour coded to indicate their value







# Decoding Resistor Values





# Decoding resistor values ...



- Hold resistor such that gold or silver band is to the right
- Note down the colours; in this case Brown, Black, Red, Gold
- On comparing against the colur code chart, we get the values of Brown = 1, Black =0, Red = x100 Ohms, Gold = 5% tolerance
- 1000 Ohms or 1 Kilo Ohms

## Decoding resistor values ...



- Brown, Black, Yellow, Gold
- Brown = 1, Black = 0, Yellow = x10000 Ohms, Gold = 5%
- 1,00,000 Ohms or 100 Kilo Ohms
- Tolerance indicates the accuracy of the part; in this case, the resistor can be anywhere from 95K Ohms to 105K Ohms



# Decoding resistor values ...



- Orange, Orange, Red, Gold
- Orange = 3, Red = 1000 Ohms,
  Gold = 5%
- 3300 Ohms or 3.3 Kilo Ohms or 3K3 Ohms



#### Resistors – Series circuits

• Resistors are components that add "friction" to the flow of current in a circuit; when they are arranged in a chain, where current has only one path to take, the resistors are said to be in "Series"; The current is the same through each resistor. Equivalent resistance is R1+R2+R3





## Resistors — Parallel circuits

• A circuit in which the resistors are arranged with their heads connected together, and their tails connected together, is said to be parallel circuit. The current in a parallel circuit breaks up, with some flowing along each parallel branch and re-combining when the branches meet again. The voltage across each resistor in parallel is the same. Equivalent resistance is 1/R = 1/R1+ 1/R2+ 1/R3





# Series Circuits - Example



- Series Resistance = R1+R2+R3
- 15+5+20 Ohms = 40 Ohms



# Parallel Circuits - Example



- Parallel resistance = 1/R = 1/R1+1/R2
- 1/R = 1/20+1/30= 1/.05+.033= 1/.833 = 12 Ohms
- An easier method for two resistors: R1 x R2 / R1+ R2
- R = 20\*30/20+50 = 600/50 = 12 Ohms



# Parallel Circuits - Example



- Parallel resistance = 1/R = 1/R1+1/R2+1/R3
- 1/R = 1/10000+1/2000+1/1000 =1/.0001+.0005+.001 = 1/.0016 = 6250hms
- Always remember, Equivalent Parallel resistance will be lower than smallest resistance!



## Series and Parallel Combination



- Current passes from A through series R1 and then can travel through Series network R2+R3 and R4
- Solve Series R2 + R4 = 12 Ohms
- Solve Parallel (R2+R3) x R4 / (R2+R3) + R4 = (12) x 12 / (12) + 12 = 144/24= 12 Ohms



## Capacitors

 A capacitor is a passive electrical component that can store energy in the electric field between a pair of conductors (called "plates")

• A capacitor's ability to store charge is measured by its capacitance, in

units of farads (F)

Capacitors block DC and allow AC







## Capacitors - Series

- When capacitors are connected in series, the total capacitance is less than any one of the series capacitors' individual capacitance
- If two capacitors are connected in series, the overall effect is that of a single capacitor having the sum total of the plate spacings of the individual capacitors





# Capacitors - Parallel

- When capacitors are connected in parallel, the total capacitance is the sum of the individual capacitors capacitance
- If two capacitors are connected in parallel, the overall effect is that of a single capacitor having the sum total of the plate areas of the individual capacitors





## Inductors

- An inductor, also called a coil, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it
- The unit used to measure inductance is Henrys (H)
- Inductors block AC and allow DC







## Inductors – Series

- When Inductors are connected in series, the total inductance is the sum of the individual inductors' inductance; L = L1+L2+L3 ...
- The total inductance for series inductors is more than any one of the individual inductors' inductance





### Inductors- Parallel

- When Inductors are connected in parallel, the total inductance is less than any one of the series inductors' individual inductance
- The Equivalent parallel inductance of inductors in parallel is 1/L= 1/L1+ 1/L2 +1/L3





#### Rectifiers

- Rectifiers, or Diodes, are components that convert AC to DC
- Rectifiers typically act like a one way street for the flow of electrons
- Rectifiers are primarily found in circuits that require AC-DC conversion





#### Half Wave Rectifier

 A half wave rectifier is a single diode circuit, that converts AC to Pulsating DC; they require heavy filtering





#### Half Wave Rectifier ...



Positive half wave rectifier



#### Full Wave Rectifier

 A full wave rectifier is a two diode circuit that converts AC to pulsating DC; they are slightly more efficient than half wave rectifiers, they avg.
 DC is higher than half wave rectifiers and require less filtering





#### Full Wave Rectifier





## Bridge Rectifier

 Bridge rectifiers are 4 diode circuits, arranged to form a loop(Bridge), to convert AC to Pulsating DC; they are far more efficient than half and full wave rectifiers













## **Smoothening Capacitor**

- A large value capacitor is often connected in parallel with the Pulsating DC output of rectifiers to smoothen out the pulsating DC, which contains a small AC component, into pure, or near-pure, DC
- The value of the capacitor must be sufficiently large enough to remove the AC component in the output









# Thank you!

Please type your questions in the chat box, or by unmuting your microphone

